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LETTER TO THE EDITOR 

Deterministic growth model of pattern formation in 
dendritic solidification? 

Fereydoon Family, Daniel E Platt and Tamis Vicsekt 
Department o f  Physics, Emory University, Atlanta, GA 30322, USA 

Received 9 September 1987 

Abstract. A deterministic growth process, based on the solution of the lattice Laplace 
equation for the temperature field, is introduced for modelling pattern formation in dendritic 
solidfication. By a simple parameterisation of the physical and environmental conditions 
during crystal growth a wide variety of dendritic patterns, similar to regular snowflakes, 
are produced. The fractal scaling of the dendritic patterns is investigated. 

The growth of dendritic crystals is a profound example among a wide range of 
pattern-forming phenomena in physics, chemistry, biology and engineering, where 
simple dynamic systems spontaneously generate complex structured patterns [ 1,2]. 
The formation of snowflakes [3,4] is perhaps the most fascinating and puzzling example 
of these processes. Although subject to intensive efforts, previous attempts have not 
produced such regular and intricate dendritic structures as those found in nature. 
Theoretical treatments of the mechanisms leading to these extremely complex patterns 
have also left a number of questions unanswered. Therefore, a simple approach 
founded on the basic physics of the problem and which produces realistic dendritic 
patterns, including snowflakes, would be valuable for understanding dendritic crystal 
growth. 

In this letter we introduce a deterministic growth process for modelling pattern 
formation in two-dimensional dendritic solidfication. The essential physics of the 
problem [ I]-heat diffusion, the interfacial boundary conditions and growth 
anisotropy-are accounted for by solving the Laplace equation with the proper boun- 
dary conditions on regular lattices using a relaxation technique. The interface grows 
deterministically at a rate depending on the local gradient by adding particles to the 
growing cluster in a way similar to various aggregation models [ 5 , 6 ] .  By varying the 
parameters of the model to reflect changes in the physical and the environmental 
conditions during solidfication, a great variety of qualitatively different patterns is 
found, many of which are strikingly similar to real snowflakes-perhaps a result 
achieved for the first time. Measurements of the radius of gyration exponent indicate 
the fractal [7] character of these structures. Finally, we measure the exponents describ- 
ing the scaling of the length and the width of the individual stems emanating from the 
centre [8] with the mass of the clusters and compare them with recent theoretical 
predictions. [9] 

t A preliminary account of this work was presented at the March meeting of the American Physical Society 
in New York (see 1987 Bull. Am. Phys. Soc. 32 6 3 1 ) .  
$ Permanent address: Institute for Technical Physics, HAS, PO Box 76, Budapest, H-1325, Hungary. 
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The rate-limiting step in the growth of a solid from its supercooled vapour is the 
diffusion of latent heat away from the moving interface to a cold bath at a large distance 
R [ 13. In the quasi-stationary approximation the reduced temperature field T satisfies 
the heat-diffusion equation 

V'T = 0. (1) 

u , = - k V T  (2) 

The growth velocity is given by 

where U, is the velocity normal to the interface, the parameter k is a constant and the 
thermal conductivity of the solid is assumed to be much larger than that of the liquid 
or vapour phase. The dependence of the interface temperature on the surface curvature 
K is determined by the Gibbs-Thomson condition 

Tnt=l-dgK (3) 
with the capillary length do= y / L  depending on the surface tension y and the latent 
heat L. Numerical procedures for solving equations (1)-(3) include standard discretisa- 
tion methods [lo] and the boundary integral method [ll], which has been shown to 
be effective for studying the role of crystalline anisotropy [ 111. 

The process we propose is designed to provide the best possible cluster growth 
method for solving equations (1)-(3) on a lattice and is a descendant of various 
aggregation models [5,6], which are particularly suited for simulating diffusion-limited 
pattern formation [ 12-18]. The structures generated by the diffusion-limited aggrega- 
tion ( D L A )  model of Witten and Sander [5] and the related dielectric breakdown 
model of Niemeyer er af [6] are random fractal patterns, which have been observed 
experimentally [19,20] in cases where the surface tension is very small and has no 
anisotropy. 

It has recently been recognised [21,22] that surface tension anisotropy leads to 
regular dendritic patterns. This was first discovered in studies of the boundary layer 
[21] and the geometrical [22] models and seems to be true for more realistic non-local 
theories [23]. Strong support for this idea was provided by numerical solutions of the 
Laplace equation [ 1 1 1  and by experiments on viscous fingering [24,25] which showed 
that with anisotropy even hydrodynamic systems can produce regular dendritic patterns. 
Noise inherent in aggregation-type simulations, however, prevents the clusters from 
having a regular and symmetric shape like real dendritic patterns [17,18]. Noise 
reduction methods [17,18] have been shown to be capable of producing many features 
of dendritic growth except when the patterns are perfectly symmetric. This suggests 
the utility of deterministic cluster growth algorithms [ 151 in which, when necessary, 
noise can be introduced in a controlled manner. Garik er a1 [15] constructed a 
deterministic model of fractal growth and obtained regular clusters having some 
properties of DLA clusters [5] and structures with stable tips. 

In our method the growth starts from a seed particle placed on a lattice. After 
each time step, the temperature field T is calculated by solving the lattice Laplace 
equation (1) with boundary condition (3) at the surface, and T = 0 on a circle of radius 
R, much larger than the size of the cluster. After the gradients at the surface sites are 
determined, we normalise them by dividing by the largest gradient. All of these 
perimeter sites are examined [26] and only those having a normalised gradient larger 
than a parameter p are filled. The effects of the anisotropic surface tension are induced 
by the underlying lattice. This approach is completely deterministic, consistent with 
equations (1)-(3). 
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In the limit p = 0, all the perimeter sites are filled and the resulting structure is a 
dense polygon with m tips reflecting the m-fold symmetry of the underlying lattice. 
For finite p the patterns are regular fractals with a fractal dimension which varies from 
2 to 1 as p is increased from 0 to 1. This non-trivial result is demonstrated in figure 
l ( a )  which shows the pattern generated on a square lattice for p = 0.35. When p is a 
constant, U,, is constant at surface sites having a normalised gradient larger than p and 
zero otherwise. In contrast, dendritic growth is governed by equation ( 2 )  and the 
interface growth velocity must be proportional to the local gradient. This implies that, 
within a time interval A t ,  p must vary linearly with time so that sites having the 
maximum gradient are always filled, while those with smaller gradients are filled less 
frequently, depending on the local gradient. 

l a )  lbl (C) 

Figure 1. Patterns generated by the deterministic growth model on a square lattice for 
three sets of parameters. ( a )  I n  the absence of surface tension, and for constant p ,  a regular 
fractal carpet is generated. The cluster shown was obtained with p = 0.35 and has a fractal 
dimension of -1.61. ( b )  A parametrisation of p according to (4 )  with a =0.1, b =0.2, 
c = 5 and zero surface tension produces regular patterns similar to dendritic crystals. ( c )  
The time evolution of a pattern grown with d,=0.4  shows how a stable parabolic tip 
appears as a result of anisotropy and a finite surface tension. 

As a discretised approximation, we assume that, during a characteristic time interval 

(4) 

which is a piecewise function having c steps and  approximating a straight line of slope 
b. Since in every time step a particle is always added to the tips, this characteristic 
time interval introduces a length scale equal to c lattice spacings. The effect of this 
length scale is most pronounced for small size clusters when the surface tension is 
zero and  when the lattice induces a high degree of anisotropy in the growth. This can 
be clearly seen in figure 1( b )  where, because of the small size of the arms (-100 lattice 
spacings), the periodic modulations on the surface of the four needle arms is equal to 
c. On the other hand, in figure 2 (a )  the effect of c is non-trivially mixed with the 
lattice spacing on a triangular lattice and the characteristic distances in the modulations 
are not equal to c. In addition, if the capillary length do is finite, as in figures l (c) ,  
2(b) and 2(c), the effect of c is not observable. 

The calculations were carried out on triangular and square lattices. We used a 
recently introduced method [ 121 of estimating the local surface curvature K by counting 
the number of filled sites n, within a circle of radius r ( r  = 3 in the present simulations) 
centred at the given perimeter site and using the expression K = (n, - no)/ n, where no 

Af = c, p has the following form: 

p = a +  b ( t  mod c)  



L1180 Letter to the Editor 

is the number of lattice sites corresponding to a flat interface and n is the number of 
sites in the circle. The values of T on the surface are then calculated from (3). The 
new values of T at each lattice point are then determined by using the Gauss-Seidel 
over-relaxation method. With a tolerance of 1O-6 it took several hundred iterations 
for the field to relax. We could also take advantage of the symmetry and relax only 
over a part of the lattice. By keeping the radius R much larger than the cluster size, 
the shape of the patterns was not affected by this choice. After the gradients at the 
surface sites have been determined and normalised, sites having gradients larger than 
p are occupied. The above process is repeated until a large cluster (8-10 000 particles) 
is generated. 

The above method can produce practically all types of observed two-dimensional 
dendritic patterns by changing the surface tension in (3) and the parameters a and h 
in (4). The various limiting cases include faceted growth, needle crystals and regular 
fractal structures, while for intermediate values of the parameters, combinations of 
these patterns are obtained. In addition, the parameter a in (4) can be varied stochasti- 
cally during growth resulting in a behaviour which simulates the effect of changing 
the temperature near the melting temperature. The effectiveness of our method is best 
demonstrated by the great variety of possible morphologies it generates. Here, we 
show only a few selected examples of dendritic patterns with fourfold symmetry in 
figure 1, and in figure 2 we present some examples of sixfold symmetric snowflakes 
generated by varying the environmental conditions during growth. Figures 1( h )  and 
2 ( a )  were generated by approximating the linear growth rule ( p  varying linearly with 
t )  by the stepwise function (4), with c = 5. The best approximation to the straight line 
is obtained by choosing a = 1/2c and h = l /c,  i.e. a = 0.1 and h = 0.2 for c = 5. Figure 
1 (c)  shows the time evolution of a pattern grown with finite surface tension ( d o  = 0.4). 
Figures 2( h )  and ( c )  were generated by varying a (-50 times) to simulate different 
environmental conditions during the growth of a snowflake. To obtain a faceted 
near-equilibrium interface pattern, a was made negative (0> a > -O.l) ,  and to obtain 
a boundary with sharp dendritic shape, a was made greater than zero (0.5 > a > 0). 
As a was changed, h was adjusted to account for the fact that, at the end of each time 
interval, the straight line must pass through the point p = 1. 

Figure 2. Three examples of patterns generated by the deterministic growth model on a 
triangular lattice for different values of the parameters, reflecting a variety of growth 
conditions. ( a )  Linear growth rule (similar to figure l ( a ) )  with a=0.1 ,  h=0.2. In ( h )  
and ( c )  a was changed a number of times during the growth to simulate different environ- 
mental conditions. The time evolution of cluster ( h ) ,  shown by distinct layers, indicates 
that the intricate internal patterns of real snowflakes are likely to correspond to various 
stages of the growth of a snow crystal. The insert shows a few typical snowflakes reproduced 
from [4]. In ( a ) - ( c )  c = 5. 
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The question of dimensionality arises naturally and can be investigated by calculat- 
ing the exponent /3, defined by R, - N P ,  where N is the number of particles in a 
cluster with radius of gyration R, [27]. We have determined p from the slope of 
log-log plots of R ,  against N for a few selected values of the parameters a and b and 
the results are shown in table 1. Our data indicate that all dendritic patterns generated 
in the simulations with time-independent values of a and b are fractals [7] on a length 
scale depending on the parameters with a non-universal fractal dimension. 

Table 1. The radius of gyration exponent p of the dendritic patterns generated by the 
deterministic growth model for selected values of the parameters a and b in the expression 
p = a + b(r  mode c), for c = 5 and do = 0. Although values of p appear to be different 
statistically, the possibility of a slow crossover cannot be ruled out. 

Lattice a b P 

Square 0.3 0.0 0.58 * 0.01 
0.4 0.0 0.67 f 0.01 
0.5 0.0 0.71 10.01 
0.6 0.0 0.79 1 0.01 
0.7 0.0 0.89 * 0.01 
0.1 0.15 0,591 0.01 
0.1 0.20 0.62 * 0.01 
0.3 0.15 0.79 1 0.01 

Triangular 0.1 0.20 0.58*0.01 
0.2 0.18 0.61 * 0.01 
0.4 0.13 0.67 f 0.01 
0.5 0.08 0.70 * 0.01 

The individual arms growing from the origin of the clusters can be characterised 
by two lengths [8]: the width w and the length 1. The way w and 1 scale with N is a 
question of great current interest [9]. As a typical example, the dependences of In( w )  
and In( I )  or In( N ) ,  for a = 0.1 and b = 0.2, on a square lattice are shown in figure 3. 
From the slopes of least-squares fits of the data to straight lines we find that 1 - N”Il ,  
with vi, = 0.66, and w - N with v, = 0.5. Recent theoretical considerations [9] have 
shown that, if the arms approach needle-like shapes asymptotically, then vil = 5 
independent of the lattice and vI-’ =31D- l ) ,  where D is the fractal dimension of 
the cluster. The value of vll agrees with this prediction. From the radius of gyration 
exponent p we estimate D = l /p  - 1.6. This implies that v L  - 0.56, again consistent 
with the data in figure 3. From considerations [9] of the critical size needed to observe 
the needle-like structure it appears that vi/  will be less than $ for small clusters and for 
structures with m-fold symmetry where m > 4 .  The reason is that the asymptotic 
needle-like structures assumed in the theoretical calculations are never reached in 
reality. In fact, for the triangular lattice we find vII =0.62, consistent with this 
observation. 

Simulations of the model introduced in this letter suggest the following conclusions: 
( i )  V2 T = 0 with boundary conditions U, = constant for V T > p and U, = 0 for V T < p 
produces Laplace fractal carpets, ( i i )  some of the puzzling features of real dendritic 
structures can be elucidated by solving the Laplace equation on a lattice with appropri- 
ate boundary conditions, ( i i i )  the great variety of patterns emerging from the same 
solidification process is demonstrated to be due to the environmental conditions 
changing in time. Since p s 0 corresponds to faceted growth, boundary conditions (3) 



L1182 

0 
Mass 

Figure 3. The scaling of the maximal length I ( @ )  and the caliper width tv (.) of the arms 
with the cluster mass N for a pattern generated with a = 0.1, b = 0.2 and e = 5 on a square 
lattice is demonstrated by the straight lines showing a least-squares fit to the data. 

and (4) are capable of simultaneously simulating various growth mechanisms such as 
surface diffusion. Figures 2( a ) - (  c)  indicate that such complex structures as snowflakes 
are produced by the interplay of such factors varying in time. 

The approach presented here appears to be more effective in producing complex 
dendritic patterns than the previous methods based on numerical solutions of the 
solidification equations and can be a useful tool for sorting out various long-standing 
and puzzling aspects of dendritic pattern formation. In particular, such questions as 
noise-driven sidebranching [28], and the role of non-lattice-induced anisotropy can 
be studied using this approach. The deterministic growth model can easily be extended 
for the investigation of three-dimensional solidification; a fundamental, but much less 
understood process than two-dimensional dendritic growth. 

This research was supported by the Office of Naval Research, the Research Corporation 
and the National Institute of Health Biosciences Support grant. Acknowledgment is 
made to the donors of The Petroleum Research Fund, administered by the ACS, for 
partial support of this research. 
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